Have a Question?

如果您有任务问题都可以在下方输入,以寻找您想要的最佳答案

负数乘负数等于什么数(为什么负数乘负数等于正数?)

负数乘负数等于什么数(为什么负数乘负数等于正数?)

题图来自Unsplash,基于CC0协议

本文目录

  • 1、为什么负数乘负数等于正数?
  • 2、负数乘以负数实际意义是什么?为什么负数乘以负数等于正数?
  • 正文

    1、为什么负数乘负数等于正数?

    进入初中学习有理数运算的时候,就会学习到负数乘以负数等于正数(简称"负负得正"),然而无数人跟小编一样,为什么负负得正,限于当时还小自己无法解答问老师也是一样说这是运算规则,你按规则会做题目会运算就行了,当时也只能这样了.想想当时若是深究下去,很可能就是新时代的数学家了.不至于现在还只是一个学霸.哈哈,想多了.

    其实"负负得正"是人为设定的,从本质上是不能被证明的,只能被解释,很多人也从数轴及相应的具体事物上可以合理的解释它.为什么负数乘以负数被定义为正数呢,为什么没有被定义为负数呢?当然它不是胡乱设定的,它的设定有其内在规律,下面我们从负数的引入开始解释:

    负数引入之后(此处省略好多字,负数的引入大家应该都知道),我们必须定义它们的运算规则,使得算术运算能够 保持原来的规律不变,例如我们对负数乘法的定义(-1)(-1)=1,我们希望保持分配律的不变,a(b+c)=ab+ac结果,如果(-1)(-1)=-1,就会有(-1)(1-1)=-2,显然是不符合分配律的,对数学家而言,经过了很长一段时间才认识到"符合规则"的负数及分数运算规则是不能加以证明的,它们是我们创造出来的,为的是保持算术基本规律的条件下使运算能够自如.

    甚至数学家欧拉也常借助一个完全不令人信服的讨论来证明(-1)(-1)必须等于1,因为1(-1)=-1,如果(-1)(-1)等于-1,那就乱了.

    有理数是我们创造的,其运算规则如果胡乱的定义,例如分数b/a+c/d=a+b/c+d,在逻辑上是允许的,但是从度量的观点来看,这无疑是荒谬的;如果这么定义分数的运算规则,那我们的符号算术将变成毫无意义,人们需要创造一个适度的工具,于是思维就顺应了这个要求而自由发挥.

    分数、负数等概念存在的纯数意义很明显,因为这种存在扩大了数的范围,方程及有理数的运算都在这个范围内,不会超出这个范围,我们把这个叫做域.直到19世纪中期,数学家们才完全意识到,在一个扩充的数域的运算,其逻辑和哲学基础本质是形式主义的,于是扩充的数域必须通过定义来创造,这些定义可以是随意的.但是如果在更大的范围内不能保持原来的规则和性质,那扩充的数域将变得毫无意义.故在数学的发展史上,每一次数学危机的产生与解决都离不开数系的扩充,每一次扩充,数的运算规则要么全部延续要么大部分延续,并不会出现任意定义一个新规则.

    综上所述,"负负得正"是在数域扩充的同时进行的定义,因为这样定义能够延续之前的数的运算规则,而它并不能通过数学方法证明,所以"负负得正"可以算得上是数学习上的一个"公理".我是学霸数学,专注于数学学习,欢迎关注!

    2、负数乘以负数实际意义是什么?为什么负数乘以负数等于正数?

    对于小学生而言,可以这样去理解 1、以0为基准数,大于0为正数,小于0为负数,即正数的相对数,如-1即为1的相对数。

    2、乘以……,即为倍数关系,如2×3 即为2的三倍 3、负数乘以负数即为负数的相对数的几倍,负×负即负数的相对数,当然为正数, 如:-2 × -3 可理解为-2 相对数(即2)的三倍。注:可以可以根据自己的理解,提炼成更为简便的语言,便于小学生理解。