二阶导数怎么求(二阶导数的意义是什么?)
题图来自Unsplash,基于CC0协议
本文目录
正文
1、二阶导数的意义是什么?
导数秒杀必备利器——二阶导数
一生二,二生三,三生万物,且万法归一,学习最省力的方法是掌握好这个最基本的“一”,很多学生喜欢刷题,但是喜欢刷题的大多成绩一般,题目你是做不完的,也不用指望在高考中能遇到你曾经做过的题目,因此刷题是舍本逐末的途径,只有将基础以及基础的衍生知识掌握透彻了,才能做到以不变应万变。
导数最大的作用是判断复杂函数单调性,我们可以很简单的求一次导数,然后通过求导函数的根,就可以判断出函数的单调区间,进而知道函数的趋势图像,不过这只是最基础的导数的应用,在很多题目中我们求一次导数之后经常无法求出导函数的根,甚至也不能直接看出导函数的正负,因此就无法判断单调性,在高考中不管文理都有极大可能用到二阶导数,虽然文科不谈二阶导数,其实只是把一阶导数设为一个新函数,再对这个新函数求导,本质上依旧是二阶导数,在理科中会更加直接用二阶导数符号来表示。
首先应鲜明的理解一下二阶导数的意义:
今天我们就来讨论一下二阶导数如何运作,当二阶导数依旧失灵时我们又该怎么处理:
对上图的解读:注意我们并不是直接对一阶导数进行再求导,而是对一阶导数中不能判断符号的部分进行求导,例如常见的一阶导数分母恒为正,但分子符号未定,则我们单独对分子部分进行求导。
二阶导数时一阶导数的导数,因此二阶导数可以判断出一阶导数的单调性,进而求出最值(高考题目中很少出现高于二阶导数的形式),我们通过一阶导数的最值来判断一阶导数的符号,注意这里一阶导数的最值只能是判断是否恒为非负或恒为非正,若求得的一阶导数最小值小于零或最大值大于零,则无意义,进而通过一阶导数的非负或非正求得原函数的单调性和最值,因此过程中最重要的还是一阶导数,用到的二阶导数其实相当于两次简单的一阶导数判断单调性。
注意:熟练掌握二阶导数的应用是我们解决高考导数题目的必备知识。
使用二阶导数必须出现一阶导数的最小值大于等于零或者最大值小于等于零才可以,但是如果出现了一阶导数最小值小于等于零,或一阶导数最大值大于等于零的时候,则单纯的二阶导将失灵,此时我们采用的是零点尝试法,即确定出一阶导数的零点的大致位置,如下:
对上面图片的解读:零点尝试法其实是无法求出一阶导数的零点,且通过二阶导无法得出需要的一阶导的最值,此时一般可以根据二阶导的恒正或恒负来判断出一阶导是否可能只有一个零点,若用零点存在定理能判断出一阶导数只有一个零点,则设出这个零点为x0,但是难点就在这里,因为不知道准确零点的区间,因此可能很难找出符合题意区间的x0,例如确定出x0在某数之前或某数之后,但是所设的x0满足f'(x0)=0,通过这个式子可以得到一个关于x0的等式,然后所设的点x0肯定是原函数唯一的最值点,因此若求原函数的最值结合f'(x0)=0这个等式有的时候能求出一个不包含x0的最值或者含有x0一个很简单的数,不过此方法并非无敌,若二阶导和零点尝试法均失效时,则需考虑你的思考方向是否正确了,在2017--2019年高考中也出现了,因此这个方法必须作为高考中的备考题型掌握。
值得关注是高考导数压轴题很喜欢的二阶导函数。用二阶导数能便捷的判断是极大还是极小值点,另外有一些需要构造函数然后再求导证明的不等式。如果用拉格朗日中值定理或凸函数的性质的话,做起来可以比较方便。
2、二阶导数怎么求?
解答:
对原函数求导数,得到计算原函数上每一点的斜率的新函数---导函数,简称一
次导数。一次导数可以用来寻找原函数上的极值点的位置。
对一次导函数求导,得到二次导函数。平时所说的导数其实都是指一次导函数。
二次导函数的意义在于判断原函数上每一点的凹凸性,判断极值的特性,极大
还是极小。
3、二阶导数怎么求?
dx、dy表示微分,当然可以拆开,对于参数方程,x=f(t),y=g(t),对于参数方程,先求微分:dx=f'(t)dt,dy=g'(t)dt,dy/dx=g'(t)/f'(t),而如果先消去参数,t=fˉ¹(x),y=g(fˉ¹(x))dy/dx=g'(fˉ¹(x))*fˉ¹'(x)=g'(fˉ¹(x))/f'(t)=g'(t)/f'(t),是一样的。而二阶导数,注意是d²y/dx²是什么意思呢?就是这里要把dy/dx看成是新的“y”,x还是等于f(t),所以应该这样:d(dy/dx)=[g'(t)/f'(t)]'dt=[g''(t)f'(t)-g'(t)f''(t)]/f'(t)² dtdx=f'(t)dtd²y/dx²=d(dy/dx)/dx=[g''(t)f'(t)-g'(t)f''(t)]/f'(t)³