回归直线方程b怎么求(线性回归方程的b怎么求?)
题图来自Unsplash,基于CC0协议
本文目录
正文
1、线性回归方程的b怎么求?
1)用所给样本求出两个相关变量的(算术)平均值: x_=(x1+x2+x3+...+xn)/n y_=(y1+y2+y3+...+yn)/n ; 2)分别计算分子和分母:(两个公式任选其一) 分子=(x1y1+x2y2+x3y3+...+xnyn)-nx_Y_ 分母=(x1^2+x2^2+x3^2+...+xn^2)-n*x_^2 3)计算 b : b=分子 / 分母
2、回归方程中a,b怎么求?
回归方程中a,b的求法:
a=Yo-bXo
b=(∑XiYi-nXoYo)/(∑Xi2-nXo2)。
注:i(表示其通项1,2…,n),2(表示其平方)为上脚标,o(表示其平均值)为右下脚标。
拓展资料:回归方程是根据样本资料通过回归分析所得到的反映一个变量(因变量)对另一个或一组变量(自变量)的回归关系的数学表达式。
回归直线方程用得比较多,可以用最小二乘法求回归直线方程中的a,b,从而得到回归直线方程。
3、线性回归方程的b怎么求?
且为观测值的样本方差.线性方程称为关于的线性回归方程,称为回归系数,对应的直线称为回归直线.顺便指出,将来还需用到,其中为观测值的样本方差.利用公式求b=a=y(平均数)-b*(平均数)
第一:用所给样本求出两个相关变量的(算术)平均值:x_=(x1+x2+x3+...+xn)/ny_=(y1+y2+y3+...+yn)/n
第二:分别计算分子和分母:(两个公式任选其一)分子=(x1y1+x2y2+x3y3+...+xnyn)-nx_Y_分母=(x1^2+x2^2+x3^2+...+xn^2)-n*x_^2
第三:计算 b : b=分子 / 分母
用最小二乘法估计参数b,设服从正态分布,分别求对a、b的偏导数并令它们等于零,得方程组解为
其中 ,且为观测值的样本方差.线性方程称为关于的线性回归方程,称为回归系数,对应的直线称为回归直线.顺便指出,将来还需用到,其中为观测值的样本方差.
先求x,y的平均值X,Y
再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)
后把x,y的平均数X,Y代入a=Y-bX
求出a并代入总的公式y=bx+a得到线性回归方程
(X为xi的平均数,Y为yi的平均数)
4、最小二乘法求线性回归方程中的系数a,b怎么求?
最小二乘法:总离差不能用n个离差之和来表示,通常是用离差的平方和,即作为总离差,并使之达到最小,这样回归直线就是所有直线中Q取最小值的那一条,这种使“离差平方和最小”的方法,叫做最小二乘法:由于绝对值使得计算不变,在实际应用中人们更喜欢用:Q=(y1-bx1-a)²+(y2-bx-a²)+。。。+(yn-bxn-a)²这样,问题就归结于:当a,b取什么值时Q最小,即到点直线y=bx+a的“整体距离”最小。用最小二乘法求回归直线方程中的a,b有下面的公式:
5、回归直线方程式子怎么应用吖?回归直线方程式?
直线回归方程的通式为:=a+bX 公式(22.3)式中Y为自由变量X推算因变量Y的估计值,a为回归直线在Y轴上的截距,即X=0时的Y值;b为样本回归系数(regression coefficient),即回归直线的斜率(slope或称坡度),表示当X变动一个单位时,Y平均变动b个单位。如果已知a与b,用以代入公式(22.3),即可求得直线回归方程。求a和b的公式分别为:公式(22.4)公式(22.5)对样本中两个变量分析,不但可作相关分析,还可进一步作直线回归分析。