四点共面怎么证明(如何证明四点共面?)
题图来自Unsplash,基于CC0协议
本文目录
正文
1、如何证明四点共面?
纯几何证法:①要是四个点分别连成两条直线相交了,那必然共面。②有位置关系,比如两两连成直线以后,出现了这两条直线垂直、平行等现象。解析几何证法:假设这四个点是A、B、C、D。(任意两点不重合)利用向量方法。
把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆。
把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。
2、如何证明四点共面?
第一种方法:任取这4点中2点做一条直线,证明做出的2条直线相交、平行、或重合即可。 第二种方法:任取4点中3点做一个平面,再证明此平面经过这个点。 第三种方法:若其中有3点共线,则此4点一定共面。(过直线与直线外一点有且仅有一个平面) 如果已知4点坐标,可以用向量法、点到平面距离为0法证明4点共面。
3、如何证明四点共面?
一、四点构成的两直线平行;二、其中三点共线;三、利用向量,证明四点构成的任意两个向量共线1。以这四点为顶点的四面体 体积为0。2。一点到其余三点所确定平面的距离为0。3。若有三点共线,则这四点必共面。4。四点中过任意两点的直线与过其余两点的直线平行或相交。
4、向量四点共面怎么证明?
纯几何证法:①要是四个点分别连成两条直线相交了,那必然共面。②有位置关系,比如两两连成直线以后,出现了这两条直线垂直、平行等现象。解析几何证法:假设这四个点是A、B、C、D。(任意两点不重合)利用向量方法。